Iterative properties of birational rowmotion II

نویسندگان

  • Darij Grinberg
  • Tom Roby
چکیده

Birational rowmotion – a birational map associated to any finite poset P – has been introduced by Einstein and Propp as a far-reaching generalization of the (wellstudied) classical rowmotion map on the set of order ideals of P . Continuing our exploration of this birational rowmotion, we prove that it has order p+q on the (p, q)rectangle poset (i.e., on the product of a p-element chain with a q-element chain); we also compute its orders on some triangle-shaped posets. In all cases mentioned, it turns out to have finite (and explicitly computable) order, a property it does not exhibit for general finite posets (unlike classical rowmotion, which is a permutation of a finite set). Our proof in the case of the rectangle poset uses an idea introduced by Volkov (arXiv:hep-th/0606094) to prove the AA case of the Zamolodchikov periodicity conjecture; in fact, the finite order of birational rowmotion on many posets can be considered an analogue to Zamolodchikov periodicity. We comment on suspected, but so far enigmatic, connections to the theory of root posets.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Iterative properties of birational rowmotion I

We study a birational map associated to any finite poset P . This map is a farreaching generalization (found by Einstein and Propp) of classical rowmotion, which is a certain permutation of the set of order ideals of P . Classical rowmotion has been studied by various authors (Fon-der-Flaass, Cameron, Brouwer, Schrijver, Striker, Williams and many more) under different guises (Striker-Williams ...

متن کامل

Iterative properties of birational rowmotion

We study a birational map associated to any finite poset P . This map is a far-reaching generalization (found by Einstein and Propp) of classical rowmotion, which is a certain permutation of the set of order ideals of P . Classical rowmotion has been studied by various authors (Fon-der-Flaass, Cameron, Brouwer, Schrijver, Striker, Williams and many more) under different guises (Striker-Williams...

متن کامل

The order of birational rowmotion

Various authors have studied a natural operation (under various names) on the order ideals (equivalently antichains) of a finite poset, here called rowmotion. For certain posets of interest, the order of this map is much smaller than one would naively expect, and the orbits exhibit unexpected properties. In very recent work (inspired by discussions with Berenstein) Einstein and Propp describe h...

متن کامل

Piecewise-linear and birational toggling

We define piecewise-linear and birational analogues of toggle-involutions, rowmotion, and promotion on order ideals of a poset P as studied by Striker and Williams. Piecewise-linear rowmotion relates to Stanley’s transfer map for order polytopes; piecewise-linear promotion relates to Schützenberger promotion for semistandard Young tableaux. When P = [a] × [b], a reciprocal symmetry property rec...

متن کامل

Research Statement Darij Grinberg

My research belongs to the field of algebraic combinatorics, centered on (but not limited to) symmetric functions and related concepts, such as combinatorial Hopf algebras, Young tableaux and trees. These objects live at the borderlands of algebra and combinatorics, often allowing for viewpoints from both sides and transfer of knowledge from one to the other. Among my contributions to this disc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015